PH102 Tutorial Sheet 3 (Jan 16, 2015) Department of Physics, IIT Guwahati

Professor Alika Khare \& Professor Pratima Agarwal

1. For a given vector $\overrightarrow{\boldsymbol{A}}=x^{2} \hat{\boldsymbol{\imath}}+y^{2} \hat{\boldsymbol{\jmath}}+z^{2} \widehat{\boldsymbol{k}}$ verify the divergence theorem over the cube of side length unity having four of its vertices at $(0,0,0), 0,0,1),(01,0)$ and $(1,0,0)$.
2. Verify the divergence theorem over the volume of an ice-cream cone as shown in fig1 for the vector field $\overrightarrow{\boldsymbol{v}}=r^{2} \sin \theta \hat{\boldsymbol{r}}+4 r^{2} \cos \theta \widehat{\boldsymbol{\theta}}+r^{2} \tan \theta \widehat{\boldsymbol{\varphi}}$.
3. A closed cylindrical shell is defined as $\rho=a$ and $\rho=2 \mathrm{a}$ and $\mathrm{z}= \pm a \pi / 2$. Calculate the total flux coming out of this closed surface for a vector field given by

$$
\vec{F}=\frac{\rho}{a} \cos (\lambda z) \widehat{\varrho}+\sin (\lambda z) \widehat{k}
$$

4. Verify the stokes theorem for the vector field $\overrightarrow{\boldsymbol{A}}=y \hat{\boldsymbol{\imath}}-x \hat{\boldsymbol{\jmath}}+z \widehat{\boldsymbol{k}}=$ over the hemispherical surface $x^{2}+y^{2}+z^{2}=a^{2}$ and $z \geq 0$.(flat surface is open)
5. Show that vector field $\overrightarrow{\boldsymbol{B}}=\left(z^{2}+2 x y\right) \hat{\boldsymbol{\imath}}+\left(x^{2}+2 y z\right) \hat{\boldsymbol{\jmath}}+\left(y^{2}+2 z x\right) \widehat{\boldsymbol{k}}$ is conservative. Calculate it's line integration along any line joining the points $(1,1,1)$ and (1,2,2).
6. A surface is formed by the cylinder $x^{2}+y^{2}=a^{2}, 0 \leq z \leq h$. The top surface of the cylinder is closed and the bottom surface is open. Verify the stokes theorem for the vector $\vec{F}=-y \hat{\imath}+x \hat{\jmath}+x^{2} k$
7. Verify the stokes theorem over the surface as shown in Fig 2 for the vector field $\overrightarrow{\boldsymbol{V}}=r \cos ^{2} \theta \hat{\boldsymbol{r}}-r \cos \theta \sin \theta \widehat{\boldsymbol{\theta}}+3 r \widehat{\boldsymbol{\varphi}} \quad($ recall the problem 7 of tut sheet 1$)$
8. Evaluate the following integrals:
i. $\quad \int_{-\infty}^{+\infty} \ln (x+3) \delta(x+2) d x$
ii. $\quad \int_{-\infty}^{a} \delta(x-b) d x$
iii. $\quad \int_{0}^{2}\left(x^{2}+3 x+2\right) \delta(1-x) d x$
9. i. show that $x \frac{d}{d x}(\delta(x))=-\delta(x)$
ii. Let $\mathrm{f}(\mathrm{x})$ be a step function defined as $f(x)=\left\{\begin{array}{l}1, \text { for } x>0 \\ 0, \text { for } x \leq 0\end{array}\right.$, work out $\frac{d f}{d x}$. Plot the function $f(x)$ as well its derivative as a function of x .

Fig 1

Fig 2

